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Abstract—Materials with internal structure are in the focus of today's interest. We investigate
a particularly simple class of such materials which, nevertheless, is of great practical use; namely
the Bravais crystals, i.e. (mono- or poly-) crystals with only one atom in the elementary cell.
Plastic deformation causes incompatible elastic strain and leads to an internal stress state, The
incompatibility, explained as some misfit of matter inside the body, is exclusively due to so-
called crystallographic defects, if nonmechanical effects such as thermal and magnetostrictive
strains are excluded. The elementary defects are classified as point, line, and interface defects.
They can be described in the language of field theory if the continuized Bravais crystal is
introduced by a limiting procedure, as explained. It is argued that any space described by affine
differential geometry is isomorphic to the continuized Bravais crystal. More complex crystals
must be treated by more complex geometries.

Point defects are described as nonmetric objects, line defects (dislocations) as torsion, and
interface defects as nonconnective objects of the material space representing the crystal. The
concept of stress space is introduced. This space is dual to the strain space considered so far.
The stress function tensor (or tensor potential) is the metric tensor of the stress space. The
other basic quantities describe the response to the presence of the defects in the form of force
stresses and of (symmetric and antisymmetric) double-force stresses.

The given equations provide a frame within which all phenomena involving crystallographic
defects have to fit. For Bravais crystals with such defects, they play a role, analogous to that
of Maxwell's equations in electromagnetism.

1. INTRODUCTION

It has been found that conventional continuum mechanics is not rich enough to describe
many important phenomena, as, for instance, plasticity associated with materials in
practical use. Therefore, continuum mechanics has been extended in various directions,
for example by the introduction of internal variables specifying the internal mechanical
state. This state is so important because the mentioned phenomena are often highly
irreversible, so that a realistic description must consider the sequence of states through
which the body passes. We shall argue in Section 2 that, in a purely mechanical sit-
uation, this state is built up from crystallographic defects, provided the material is
crystalline. Noncrystalline materials are not considered in this article. We shall restrict
ourselves to Bravais crystals because these have the narrowest variety of defects. On
the other hand, they have certain basic types of defects, namely point defects, line
defects, and interface defects. Therefore, the restriction to Bravais crystals does not
eliminate most of what is interesting in our field.

In Part I of this work we introduce, among others, the concept of the continuized
(Bravais) crystal. This crystal is a generalized continuum in which three crystallo-
graphic directions can be identified at ‘‘almost’’ every point. Points where they cannot
be identified group themselves at single points and along lines and interfaces. This
permits us to define the three types of defects mentioned above. It is argued that the
continuized crystal is isomorphic to any space which is described by affine differential
geometry. All defects are identified as important quantities of this geometry.

In Part II we show that the quantities which represent the response to the presence
of the defects are conveniently considered in the so-called stress space which is dual
to the strain space regarded so far. The duality, which is a fundamental feature of the
theory, implies that the equations for the response quantities, generalized stresses,
obey the equations of the affine geometry of the stress space. In this respect, the stresses
are analogous to the defects rather than to the strains, as emphasized by Kleinert[1].
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PART I. THE KINEMATICS OF THE INTERNAL MECHANICAL STATE
2. STATE AND STATE QUANTITIES

The physics of the solid state or, simpler, solid state physics belong to the most
extended disciplines in the general area of physics. This is so because, depending on
the state in which the solid is found, its properties and behaviour may vary enormously.
Similarly extensive is the manifold of different states.

The mechanics of the solid state or, simpler, solid state mechanics is the mechanical
part of solid state physics. The term *‘solid state mechanics’’ is not often used, although
it contains an important message. In fact, it emphasizes the decisive role of the state
in mechanical application. It is, perhaps, useful to recall how the notion of state is
introduced in physics and mechanics. Firstly, the state quantity is defined as a quantity
which is characteristic for the present situation of the physical system and can, at least
in principle, i.e. by a thought experiment, be measured at any time without having
information about the past. To give an example: The elastic strain is a state quantity
because it can be measured in the way just explained. In fact, we may imagine that a
volume element is cut out from a deforming body at any time. After relaxing the stress
we measure the change in shape and volume of the elements and thus obtain the elastic
strain. It is easy to show that plastic strain is not a state quantity because, for its
measurement, information from the past is needed.

Physical systems are usually described by more than one state quantities. All these
state quantities assume certain values at any instant of time. By these values they
characterize what is called the state of the system at that time.

3. INCOMPATIBILITY

Internal state quantities are variables which have a meaning independent of outside
action on the body. Thus, a solid can be in an internal mechanical state even in the
absence of external action. A simple example is an elastic solid in an internal stress
state, i.e. a stressed body which is not subject to any external forces. This problem
was investigated by H. Reissner{2], who noticed that internal stresses in a simply
connected medium are not in contradiction with Kirchhoff’s theory.

An internal, or incompatible, stress state (eigen stress state) can be understood as
follows. If the stressed body is cut into small elements, in which the stress is then
relaxed, we obtain an assembly of elements which do not fit together. Thus, an in-
compatible deformation implies that a nonfitting collection of elastic elements is united
to a compact body. If the nonfitting occurs on the infinitesimal scale, then we can
obtain an internal stress state which varies continuously through the body.

A well-known realization of this situation occurs in the plastic deformation of a
crystalline solid. Imagine that an element of the body suffers a plastic deformation, for
instance by the motion of dislocations. If during this deformation the element were
isolated, it would change its shape such that it would, in general, no longer fit together
with the remainder of the body. If, however, the medium is to remain compact, then
the element will suffer a corresponding constraint from its surroundings. This constraint
causes an additional elastic strain such that the total strain, plastic and elastic, is com-
patible, although both plastic and elastic strains are incompatible. If this consideration
is extended to all elements of the body, then the relation to the procedure of the pre-
ceding paragraph becomes obvious. In fact, imagine that the undeformed body is cut
into elements which then are deformed plastically. In general, they now form a non-
fitting collection which is then united to a compact body by (incompatible) elastic
deformation.

After the described deformation, the medium is in an internal mechanical stress
state characterized by the presence of dislocations. These can be seen and their ar-
rangement measured, e.g. by electron microscopy. Since it is not necessary for such
measurements to know anything about the past, we conclude that any quantity de-
scribing dislocation arrangements is a (mechanical) state quantity.
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4. DEFECTS AS INTERNAL MECHANICAL STATE VARIABLES

It is a fundamental, perhaps surprising, feature of this theory that it is not the
incompatibility, but rather the dislocation, which is the primary state quantity. By the
term ‘“‘primary’’ we would like to stress the following: If some position-dependent
quantity is a state variable, then its spatial derivative is also a state variable. It is shown
in the theory that the incompatibility due to dislocations is obtained in the form of
some derivatives of the dislocation density tensor. Thus, incompatibility is not a primary
state quantity.

Incompatibility can also arise in rather different situations. Well-known are stresses
due to temperature and magnetization variation. In this work, we shall restrict ourselves
to purely mechanical states. Then, incompatibility is always due to crystal defects.

Dislocations are line-shaped defects. In the frequently occurring Bravais crystals
which are constructed by repeated translations of a point (atom)—rather than of a cell,
containing several atoms—in three nonplanar directions, the dislocation is the only
elementary (as opposed to composed) line defect. Since the defect structure in Bravais
crystals is much simpler than in other crystals, we shall only consider those. In real
or imagined high resolution microscopy point defects, so-called vacancies and (self- )
interstitials, as well as interface defects can also be seen in a space which otherwise
appears empty. This suggests to us to look at the crystal in analogy to the vacuum and
at the elementary defects in analogy to the elementary particles filling the vacuum. In
this view, the crystal can be compared with the universe, and it is perhaps not too
surprising that the equations governing the defect state are formally similar to those
of the universe, in particular to those of general relativity theory.

The above considerations make sense in situations where crystallinity is the pre-
vailing feature of the solid. This is the case when all defects can be identified distinctly
and individually. This is not so in the so-called amorphous solids which, therefore, are
excluded from this theory.

If we restrict ourselves to pure mechanics, then the internal state of our solid is
completely specified by the defects and their distribution. Since these defects largely
determine the properties and the behaviour of the solid, there exists basic interest in
a theory of crystal defects. The question then arises whether a continuum theory or a
field theory will fulfill the purpose. It is good to distinguish between these two types
of theories. It is a fundamental feature of what is now understood as a physical field
theory that the physical space in question contains individual singularities which sur-
round themselves with fields, and in this way interact with each other. A continuum
in the ordinary sense lacks these singularities and, therefore, is closer to an amorphous
rather than to a crystalline solid. In the last 20 years, however, certain '‘generalized"
continua have been investigated, among others the pseudocontinuum introduced by
Rogula[3] and Kunin[4]. Whereas these generalized continua are good for some pur-
poses, they do not seem to smooth the way for a field theory of defects. This goal,
however, may be achieved by the notion of the continuized crystal, to be explained
below.

5. THE CONTINUIZED CRYSTAL

Because the lattice parameter is rather small (atomic spacing ~10~'® m) compared
to other lengths that are important in the particular problem, we can neglect its finiteness
altogether and treat the solid as a continuum. A rough way to do this is to distribute
the mass of each atom over the available space such that the medium is continuously
filled with mass. The medium would now be a true continuum which remembers its
crystalline state only via the anisotropy of its properties. Obviously, this procedure
leaves no space for individual defects.

Consider now a limiting process consisting of a sequence of steps of such a nature:
In each step the three lattice constants (each one belonging to one of the mentioned
nonplanar directions) shall be reduced by a constant factor, say, & (e.g. k = 1), and at
the same time, the mass of the particles shall be reduced by the factor k3. Obviously,
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this process leaves the mass density constant. Let us call the mass points in the lattices
produced in the described way ‘‘quasi-atoms’’. No matter how far we have gone in
our procedure, the following statement will always be correct, as long as the crystal
does not contain defects: Three crystallographic directions can be recognized at each
individual quasi-atom. Thus, the main characterization of a crystal, namely the exis-
tence of crystallographic directions with some length scale, is preserved in the limiting
procedure. After N steps, the lattice constants are reduced by factor of kV. This means
that we have the impression of seeing the original crystal if we look at the *‘N-step
crystal’’ with a magnification of k= V.

So far, we have considered the so-called ideal crystal, which is the undeformed
and undefected crystal. The crystal which is elastically deformed but defect-free shall
be named *‘perfect.”’ Thus, the ideal crystal is a special case of the perfect crystal. To
study the perfect crystal, consider a volume element, say A V. If AV is small enough,
e.g. infinitesimal, then its strain state is homogeneous plus a nonhomogeneous strain
which is small of order (A V)2. Hence, the strain state is homogeneous in the limit A Vv
— 0, and the magnification statement applies as before.

Now we come to the defected crystal, which can be taken as undeformed from
outside, according to the last result. Simplest is the case of point defects. These become
‘*quasi-point defects’ and are reduced in strength analogous to the quasi-atoms. The
magnified N-step crystal again has the appearance of the original crystal, with point
defects.

The last result is a consequence of the fact that the density of point defects, like
that of mass, is measured per unit volume. Dislocation densities are measured per unit
area. If we insist that the dislocation density, defined as the resulting Burgers vector
of all dislocations intersecting an area element, is preserved in the continuization pro-
cedure, then we find that the distance between neighbouring dislocations, when meas-
ured in quasi-atomic spacings, increases like k= ! in each step. Thus, the magnification
statement is not valid for dislocations. Of course, the distance between the quasi-
dislocations decreases in our procedure when it is measured with a constant scale.

Interface defect densities are measured per unit length of intersecting lines. They
are not well explored. Therefore we omit a deeper discussion of these.

6. DIFFERENTIAL GEOMETRY OF DEFECTS

The particular signification of the continuized crystal lies in the fact that the (quasi-)
atomic configurations of this crystal are exactly described by the so-called affine dif-
ferential geometry.

Metrricity
Consider first the perfect crystal. Lengths are measured and atoms identified by

counting lattice steps in the three crystallographic directions, then applying Pythagoras’
theorem

ds? = gu dx* dx/, (1)

where ds is the distance of two atoms with relative position dx*. It is convenient to
use cartesian coordinates. ds as introduced in eqn (1) is not the distance obtained by
an external observer by means of a constant scale, but is, rather, the distance found
by an internal observer with the help of the counting procedure. The first named dis-
tance, when squared, would be 8;; dx* dx;’. The difference of the two distances is,
of course, the ‘‘external’’ strain in the perfect crystal.

If dislocations are introduced, then the counting procedure remains practicable.
Uncertainties, which occur because it makes a difference of one step when a dislocation
is once passed on the right- and then on the left-hand side, are small of higher infini-
tesimal order and need not be regarded. The uncertainty is, nevertheless, a fundamental



Incompatibility, defects, and stress functions in the mechanics of generalized continua 751

feature of the dislocation, because it is directly related to Frank's Burgers circuit, by
which the dislocation is defined in crystal physics. A continuized version of this circuit
has been introduced into differential geometry by Cartan before the discovery of the
crystal dislocation. It was the great discovery of Kondo[5] and of Bilby, Bullough, and
Smith[6)] that Cartan’s torsion, a fundamental notion of differential geometry, and dis-
location are essentially the same thing. We shall soon introduce a quantity I'*,, called
the affine connection of the space considered in our differential geometry. We mention
in passing that the torsion is quantitatively described by that part of I'%, which is
antisymmetric in the subscripts m, [. Details of this are described in many texts on
differential geometry, so that they can be omitted here (see e.g. Schouten[7]).

The situation is different with the point defects, which in the continuation pro-
cedure retain their distance. Thus, the internal observer will meet a point defect after
the same number of steps in the real crystal as in the continuized crystal. Each time,
he does not know what to do. This means that, unlike dislocations, point defects break
the metricity. A nonmetric geometry is now needed.

Nonmetric situations are possible within affine differential geometry. There the
nonmetricity is quantitatively defined and is another fundamental notion. It follows
from our consideration that the nonmetricity can be used as a measure of point defect
densities (Kroner[8], Zorawski[9]).

Affine differential geometry is based on the operation of parallel transport of a
vector. Two vectors, say v*(¥™ + dx™) and v*(x™) are said to be parallel, or relatively
parallel-displaced, with respect to a quantity I'%, introduced for this purpose, if

dv* + T'k' dx™ = 0. )

I'%. is a central quantity of affine differential geometry and is called the *‘affine con-
nection,”’ also the linear connection or affinity. In fact, it defines the connectivity of
the considered space. Vectors (and also tensors) can also be displaced parallel along
a finite path. If this path is closed, one obtains

S
fﬁ dv* = - 3‘5 Thof dem = ~3 f f REof dS™, 3)
C C
where § is the area bounded by the circuit C and
annl = 2(anr‘{\nl - rﬁprﬁﬂ)lmn] (4)

is the curvature tensor, which vanishes if, and only if, the transported vector coincides
with the original vector. If the curvature tensor vanishes for arbitrary circuits, the
situation is that of teleparallelism.

If any two points of our space can be connected by paths along which parallel
transport is possible, then the space is said to be connected, or to possess connectivity.
It is important for us that admissible paths for parallel transport cannot pass through
elementary interface defects. This statement can even be used for the definition of
these defects. Thus interface defects break the connectivity. That means that the affine
connection is no longer well-defined, and the curvature tensor, which now is to be
introduced independently of the connection, does not obey the Bianchi identities which
arise from the particular form (4) of the curvature tensor. The ‘‘nonfulfillment’ can
be made quantitative and named ‘‘nonconnectivity.’’ Our result is, then, that the non-
connectivity can be used as a measure of interface defect densities.

The details of nonmetric and nonconnective defects are not yet well explored. It
seems as if the affine differential geometry with the extension to nonconnective situ-
ations has just enough freedom to describe completely the (quasi-) atomic configurations
of the continuized defected crystal. If this is true, then any space described by affine
differential geometry is isomorphic to a continuized crystal.
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1I. THE STATICS OF THE INTERNAL MECHANICAL STATE
7. LINEAR ELASTICITY THEORY

Consider, first, states caused by external loads on the surface and in the interior
of the body. In the linearized theory, the relation between elastic strain, €, and dis-
placement, u, is

€; = ¥ou; + du) or e = defu 5)

(for the operator ‘‘def’’ read ‘‘deformation of™’). The special form (5) of the strain
tensor implies the compatibility equations

EYV = —e*"ei™my, di€mm = 0, or E

ince =0, EY = E" (6)
(for the operator *‘inc’” read '‘incompatibility of"*). The operator identities
incdef=0, divinc=0 (7)

are easily proved. They play a similar role in the theory with symmetric tensor fields
as do the well-known identities

curl grad = 0, div curl = 0 (8)

in a theory with vector fields. In particular, any symmetric tensor field, say 7, can be
decomposed according to

7 = defa + inc ¢, 9)

where a and ¢ are a suitably chosen vector field and symmetric tensor field respectively.
Here, we are interested in the internal stress situation. We, therefore, set the
external forces equal to zero and are left with the following set of equations:

dive =0, o;=o05, €=35...0, E(=ince) = 1. (10)

For simplicity, we consider situations in which boundary conditions need not be taken
into account. Note that eqn (5) can no longer be used as a definition of the strain,
because an elastic displacement field does not exist in the incompatible situations.
Therefore, the strain is to be defined by means of eqn (1), for instance as

€ = ¥Hgu — du), (In
if cartesian coordinates are chosen. This definition is well-known in the nonlinear theory
of elasticity. The third eqn (10) is the inverse of the linear law of elasticity, valid also
in the case of elastic anisotropy. In the fourth eqn (10) 7 is the symmetric tensor field

of incompatibility, which is a quantitative measure of the nonfitting of the elements
described in Section 3. Note that from the definition of E

divE=0, E;=Ej, (12)
hence

divy =0, N = M (13)
The first two eqns (10) are satisfied identically by

o = inc ¥, Xiy = Xjie (14)
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where x is known as the Beltrami stress function tensor (also stress potential or tensor
potential). A combination of eqns (10) and (14) leads to

inc(s . . inc X)) =n (15)

as the set of simultaneous differential equations for x. Since a stress potential of the
form def a does not contribute to o, an extra condition can be imposed on x. An
interesting choice, for the case of elastic isotropy, can be formulated in terms of an
auxiliary potential

1 v
1 = .
Xy ZG (x” 1 4+ 2v 8”) ’ (16)

where G is the shear modulus and v is Poisson’s ratio. The condition, given first by
Kréner[10] and Marguerre[11], reads

div x' = 0. (17)
Using this ‘‘gauging’’, eqn (15) reduces to

Vix! =1 (18)

which is in accord with eqns (13). The anisotropic case has been treated by Kroner{12],
but will not be reviewed here. This reference contains a review of the state of our field
in 1980.

The simplicity of eqns (17) and (18) makes the stress potential x' (or x) a most
useful tool for incompatible strain problems. The reader who is familiar with electro-
dynamics notices the analogy between the there-introduced vector potential and the
tensor potential x. We mention in passing that the dynamic problem of stress functions
was treated, e.g. by Kluge[13].

8. NONLINEAR ELASTICITY THEORY

In the compatible situation, the strain can be related to the displacements in the
manner described in the textbooks on nonlinear elasticity theory. The compatibility
equations are then expressed as the vanishing of a tensor, which is the nonlinear an-
alogon to the tensor E. For simplicity, also this tensor will be called E. If, in the
differential expression defining E, the ¢ are replaced by gy, according to eqn (11),
then it has exactly the form of the 3-dimensional Einstein tensor (recall that the 4-
dimensional Einstein tensor occurs in general relativity theory). In three dimensions,
the Einstein tensor is related to the Riemann-Christoffel curvature tensor, another
fundamental quantity of differential geometry, by

Knmlk = (’nmielkiEij- (19)

This tensor has to be distinguished from the curvature tensor R, introduced in Sec-
tion 6. In fact, K is a special case which arises when the affine connection defining R
has the special form of a Christoffel symbol. This is the case of Riemannian geometry.
These remarks also explain the name ‘‘Riemann-Christoffel’’ tensor.

The (nonlinear) compatibility equations are equivalent to the vanishing of the Rie-
mann-Christoffel curvature. This result has been known for a long time. It was quoted,
for instance,by Trefftz[14].

In the incompatible situation, the Einstein tensor and the Riemann-Christoffe! ten-
sor no longer vanish. Of course, the definition of E, i.e. the nonlinear generalization
of the first part of eqns (6), remains valid. The identities corresponding to those of eqns

cae .71
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(12) are now

V.E'" =0, E' = E", (20)

with V; as the symbol of covariant differentiation in the Ricmannian spacc considered
here. V.E" is the divergence of E in this space. In differential geometry, the two equa-
tions in (20) are often called the first and second Bianchi identities. Using eqn (19),
they can also be written in terms of the Riemann-Christoffel tensor.

In linear approximation, the first two eqns (10) have the same form as eqns (20).
Overmore, the relation between o and x is formally equal to that between E and g.
Thus, we can interpret the first two eqns (10) as linearized Bianchi identitics of a space
with metric tensor x. This was first proposed by Schaefer|15], who also stressed the
relation to relativity theory. We shall now postulate that the force and moment equi-
librium conditions for the internal stress state are the nonlinear Bianchi identities

VieV =0, o =g, (1)

where V; is the symbol of covariant differentiation in the stress space, thus different
from V,. The strongest argument for this postulate is that it makes the stress space dual
to the strain space and vice versa. In fact, the equations of the stress space are now
exactly of the same form as those of the strain space. The deeper reason of this duality
stems from the fundamental duality of general mechanics, i.e. from the duality of space
and momentum, as it manifests itself, for instance, in Hamilton’s canonical equations.
A final proof for the postulate does not yet exist. For recent work on the problem of
duality, see Amari[16].

9. THE STRESS SPACE OF THE CONTINUIZED CRYSTAL WITH DEFECTS

In Part II of the article, we have not yet spoken about the origin of the incom-
patibilities. Assume now that these come from the defects discussed in Part I. Since
the space defined by the Riemann-Christoffel tensor is metric and connective, it is too
narrow to account for point and interface defects. We therefore introduce the more
general curvature tensor R%,, and the corresponding space. In view of the duality of
stress and strain space, we expect that the Bianchi identities of the stress space are
the static field equations of the mechanical defect state. These equations are equili-
brium equations for the force stresses, and for the generalized stresses that arise as
response to the presence of dislocations and point defects. These stresses are double-
force stresses with and without moment. The equilibrium equations now have a more
general form than eqns (21). For instance, it was shown by Stojanovié¢[17] and Kroner
(18] that, in the absence of point defects, but in the presence of dislocations, the second
of eqns (21) are the well-known equilibrium equations for moments, if moment stresses
are admitted. One finds that these moment stresses form the torsion of the stress space
and are the specific response to dislocations.

Similarly, the specific response to point defects corresponds to the nonmetricity
of the stress space. These are generalized stresses of the type ‘‘double force without
moment.”’ A more detailed study of these stresses is desirable.

In connection with the interface defects, we had mentioned the possibility that the
space could be nonconnected. In that case, the Bianchi identities are no longer valid.
For a stress space, such a situation would mean that external forces and double forces
act upon our body. This is most easily seen on hand in the first eqn (10), if there the
zero is replaced by the external force density. Also, the last results demand deeper

studies. One may altogether say that the static part of the theory is much less explored
than the geometric-kinematic part.
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10. CONCLUSION

We have shown that the elementary crystallographic defects, as well as the per-
taining response quantities, are well described by the affine differential geometry of
two mutually dual spaces named strain and stress space. A most helpful concept for
this is the concept of the continuized crystal. Whereas certain details of the theory still
need clarification, it seems that the general picture is correct. In particular, we believe
that the continuized Bravais crystal represents that generalized continuum, which is
most appropriate for the description of Bravais crystals. Note that many important
materials such as iron, copper, nickel, and aluminum are of the Bravais type. The utility
of the concept of the continuized Bravais crystal does not at all diminish the value of
other concepts of generalized continua. Such concepts are extremely important, for
instance for the theory of composite materials.

The theory developed here is not closed because, so far, we have not connected
the stress space with the strain space. The missing part is, therefore, some unification
of the two spaces, usually based upon the constitutive equations. Because they contain
all the irreversibility of the processes with defects, we expect that such equations which
contain the whole information about the material must be extremely complex. The
constitutive equations used so far have always had a limited range of applications, and
this will probably remain so.

The equations of differential geometry are basically nonlinear. Of course, they
can be linearized, but at a cost of missing the fundamental phenomena which cannot
be described within a linear theory. Important in this respect is the mutual conversion
of defects as well as their creation and annihilation; e.g. dislocations create point defects
in so-called nonconservative motion.

We have omitted completely the dynamics of defects as well as the so-called gauge
theories which represent another approach to establish the theory of the internal me-
chanical state (defect state). Dynamical equations are obtained by adding inertia terms
to statical equations. It seems that the main difficulties with dynamics do not lie so
much in the equations of differential geometry extended to dynamics, but rather in the
constitutive equations which were outside the scope of this article.

The gauge theory of defects has become fashionable in recent times, mainly due
to the great success of gauge theories in other fields of physics. The first proposal to
apply gauge theoretical concepts to defects seems to have occurred in little noticed
work by Turski in 1967[19]. Alicia Golebiewska-Herrmann, to whom this issue and this
article is dedicated, drew early attention to the analogies between dislocations and
other field theories. She proposed to apply gauge theories and had, herself, first suc-
cesses[20-22]. Since then, many works in this field have followed (for references see,
e.g. the report[23]). It is doubtful whether the gauge theory will lead us to fundamental
new results that cannot be obtained in another way, for instance with the methods of
this article. The great value of gauge theories is rather their unifying conception, ap-
plicable to all field theories. This conception makes optimum use of symmetry and is,
therefore, most precious for the understanding of the underlying physics.

Acknowledgement—The sciences of engineering and materials owe much to Alicia Golebiewska-Herrmann.
Her contributions go far beyond the theory of crystal defects. A great future as a scientist lay before her
when she had to leave us. She will not be forgotten.
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